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Abstract

The effects of uncertainties on the strength of a
single lap shear joint are explained.  Probabilistic and
possibilistic methods are used to account for
uncertainties.  Linear and geometrically nonlinear finite
element analyses are used in the studies.  To evaluate
the strength of the joint, fracture in the adhesive and
material strength failure in the strap are considered.
The study shows that linear analyses yield conservative
predictions for failure loads.  The possibilistic approach
for treating uncertainties appears to be viable for
preliminary design, but with several qualifications.

Introduction

In the final stages of the design of future advanced
aerospace vehicles, the design procedures need to
account for uncertainties by calculating the risk or
reliability.  These calculations will involve probabilistic
analysis.  While probabilistic methods may be required
in the final stages of design, methods that merely bound
a response quantity and provide the most likely value
may be adequate for early stages of design.  Such
methods, referred to herein as possibilistic methods,
have the potential for allowing a large number of design
options to be evaluated rapidly during the conceptual
and preliminary design stages when there may be little
data and little need for precision.
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When compared with traditional factor-of-safety
methods, both probabilistic and possibilistic methods
require additional inputs but provide more and higher
quality outputs.  Variables in these methods can be
classified as either certain or uncertain.  For
probabilistic methods, the uncertain variables are
assumed to have a probability density function. In turn,
probabilistic methods provide a probability density
function for the response quantities.  Similarly,
possibilistic methods require a membership function for
the uncertain parameters, and they provide a
membership function for the response quantities.

The general objective of this paper is to study the
differences between probabilistic and possibilistic
methods by exploring their application to a simple and
yet commonly encountered structural component.  The
selected component is a single lap shear joint.  The
specific objective of the paper is to study how
uncertainties affect the strength of a single lap shear
joint.  The study considers two ways to account for
uncertainties (probabilistic and possibilistic), examines
the effect of a geometrically nonlinear analysis, shows
the effect of two failure modes (fracture in the adhesive
and material strength failure in the strap), and illustrates
several computational techniques.

Description of Problem

The single lap shear joint consists of lap and strap
adherends bonded with an adhesive as shown in
Figure 1.  This configuration has been analyzed
extensively in References 1-5.  The strap is subjected to
a tensile load F that is reacted at the x=0 plane.  The
adhesive is assumed to contain a crack of length c
situated centrally within the adhesive.  Boundary
conditions at the left end of the joint are u(0,y) = 0 and
v(0,0) = 0.  These boundary conditions represent
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Figure 1  Single lap shear joint.

symmetry conditions.  Boundary conditions at the right
end of the strap are u(l1,y) = constant and v(l1,0) = 0.
These boundary conditions correspond to zero rotation
of the face of the strap at the right end and approximate
the restraints provided by the grips in a testing machine.
Various configurational and material properties that
define the single lap shear joint analyzed in this paper
are given in Table 1.  The lap and strap adherends are
taken to be 2024 T3 aluminum.

The ABAQUS finite element structural analysis
program (Ref. 6) was used to analyze the joint.  The
two-dimensional finite element model of the joint
(Fig. 2) had 1692 plane strain, 8-node, biquadratic
elements (denoted CPE8) with 5331 nodes.  These
CPE8 elements were used throughout the model,
including at and near the crack tip.  Near the crack tip,
fine mesh modeling is used (Fig. 2(c)), and equal size
elements with aspect ratios 1 are maintained on either
side of the crack tip to facilitate strain energy release

rate calculations.  Linear and geometrically nonlinear
analyses were carried out.  The nonlinear analysis was
carried out to study the effects of eccentricity of the
loading and the resulting rotation of the joint.

Stress
check

Crack length c

a)  Overall model

b)  Overall model with thickness enlarged to show finite
element mesh

Crack Location

c)  Detail near the crack tip

Figure 2.  Finite element model of single lap shear joint.

Table 1.  Values of quantities that define the single lap shear joint

  
Variable Symbol

Probabilistic Analysis
(normal distributions) Possibilistic Analysis α=0

Mean
Standard
Deviation

Lower
Bound

Upper
Bound

Thickness, strap – in. t1 0.125 0.005 0.11 0.14

Thickness, lap – in. t2 0.125 0.005 0.11 0.14

Length, strap – in. l1 12.0 0 12 12

Length, lap – in. l2 10.0 0.16 9.52 10.48

Thickness, adhesive – in. ta 0.0050 0.0005 0.0035 0.0065
Length, crack – in. c 4.00 0.08 3.76 4.24

Modulus, metallic adherends - psi Em 10,500,000 105,000 10,185,000 10,815,000

Poisson's ratio, metallic adherends νm 0.3125 0 0.3125 0.3125

Modulus, adhesive - psi Ea 336,000 16,800 285,600 386,400

Poisson's ratio, adhesive νa 0.40 0 0.4 0.4

Critical value of G (total) – in. lb/in.2 Gc 5.50 0.66 3.52 7.48

Yield stress 2024 T3 - psi σyield 44,000 880 41,360 46,640
Crack Growth Increment – in. ∆c 0.00125 0 0.00125 0.00125
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To study the effect of uncertainties, nine of the
quantities in Table 1 were taken to be independent
random variables with normal distributions and with
specified means and standard deviations.  Two failure
modes were considered – fracture in the adhesive due to
an existing crack and material strength failure due to
yielding in the strap.

Analysis Approach

This section describes the two approaches that
were used to treat uncertainty and the two approaches
that were used to evaluate failure.  Probabilistic and
possibilistic approaches were used to treat uncertainty.
The two failure modes that were used are fracture in the
adhesive caused by an existing crack and material
strength failure caused by yield in the strap.

Accounting for Uncertainties

In the probabilistic approach for accounting for
uncertainties, nine quantities were assumed to be
random variables with normal distributions.  The
random variables and their statistics are given in

Table 1.  With these nine random variables, Monte
Carlo simulations (Refs. 7, 8) were used to calculate the
probability of failure of the joint for various values of
the load F.  (A brief description of the Monte Carlo
method is given in Appendix A.)  Convergence of the
Monte Carlo calculations was evaluated by using 100,
1000, and 5000 trials and by comparing results from a
Monte Carlo simulation with results from a first order
reliability method (FORM, Ref. 7).  The probabilistic
analysis code ProFES (Ref. 9) was used for all these
calculations.

In the possibilistic approach (Refs. 10, 11),
membership functions were assigned to the nine
random variables indicated in Table 1.  An example of
a membership function is shown in Figure 3.  The
parameter α indicates the possibility of an uncertain
quantity taking on a given value.  The objective is to
use the membership functions of the input parameters
(e.g., dimensions) to determine the corresponding
membership functions for the response quantities (e.g.,
stress, buckling load). Techniques for calculating with
membership functions are given in Reference 10.  The
membership functions for the response quantities are
then compared with the membership functions of the
allowable responses to determine the possibility of
failure.  In this paper, the membership functions for the
nine random variables are taken to be isosceles triangles

with the most likely value (MLV in Fig. 3) equal to the
mean value given in Table 1.  The most likely value
corresponds to α = 1.0.  The absolute upper and lower
bounds (UB and LB in Fig. 3) are equal to the mean
value plus/minus three standard deviations.  The
absolute upper and lower bounds correspond to α = 0.0.
A brief discussion of membership functions together
with an example that illustrates techniques for
calculating with membership functions are presented in
Appendix B.  Comparisons between probabilistic and
possibilistic methods are given in Reference 11.

1.0

α

0
LB MLV

Variable
UB

Figure 3.  Example of membership function.

Fracture in the Adhesive

The strain energy release rates for self-similar
crack growth are used to evaluate fracture in the
adhesive due to an existing crack.   The evaluation
consists of calculating values of the total strain energy
release rate GT and comparing these values with the
experimentally determined value of the critical strain
energy release rate GC (Refs. 17, 18).  Failure is
assumed to occur when the total strain energy release
rate is equal to or greater than the critical strain energy
release rate, i.e.,

G GT C≥ (1)

For this joint configuration, the total strain energy
release rate GT  is given by

G G GT I II= + (2)

where GI  and GII  are the strain energy release rates for
mode-I and mode-II  failures, respectively. The critical
energy release rate in equation (1) for mixed-mode
fracture is dependant on the mode-mixity (Refs. 17,
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18).  The critical energy release rate used in this paper
is for FM-300 adhesive tested in mixed-mode
conditions with a mode-mixity, G GI II/ .= 0 3  (Ref. 5).

The “virtual crack closure technique” (VCCT) is
used to evaluate GI  and GII  using the crack tip forces
and the opening and sliding displacements of the crack
faces (Refs. 12-16).  Due to large rotations of the model
in the vicinity of the crack tip, a nonlinear formulation
of the VCCT that utilizes a local x'-y' system (see
Fig. 4) is used (Refs. 2, 15).  The displacements of the
crack-tip node and the node ahead of the crack tip are
used to determine a local x' axis of the rotated
coordinate system. The expressions for GI  and GII  in
the local coordinate system can be written using the
notation shown in figure 4 as:

G
c

Y v v Y v vI i m m j l l
= − − ) + − )(








1

2∆
' ' ' ' ' '

* * (3)

G
c

X u u X u uII i m m j l l
= − − ) + − )(








1

2∆
' ' ' ' ' '

* * (4)

where

∆c  is the crack growth increment, and is equal to the
width of the elements at the crack tip,

X Yi i
' ',  are the nodal forces at node i  evaluated using

the elements I and J in the x’ and y'  directions
respectively,

X Yj j
' ',  are the nodal forces at node j  evaluated using

the element I  in the x’ and y'  directions respectively,

u u u um m l l
' ' ' ', , ,* *  are displacements in the x' direction at

nodes m m l, , ,*  and l*  respectively, and

v v v vm m l l
' ' ' ', , ,* * are displacements in the 'y direction at

nodes m m l, , ,*  and l*  respectively.

The values of the forces and displacements on the right
hand sides of equations (3) and (4) are extracted from a
finite element analysis.

Material Strength Failure in the Strap

Failure in the strap is assumed to occur when the
stress in the strap exceeds the yield stress of the
material.  The stress was examined in the region
denoted “Stress Check” in Figure 2.  That region does
not include the loaded end, where the boundary
conditions may cause local stress perturbations.  In the

∆C
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Crack

∆C

a)  Undeformed shape

y', v'

y

x

x', u'
m

m*l*

l

ij

I

J

b)  Deformed shape

Figure 4.  Model and notation used in virtual crack
closure technique.

region examined for stress failure, the bending stress is
small compared with the extensional stress.  (For
example, by using a geometrically nonlinear finite
element analysis it was determined that the bending
stress is less than 1% of the extensional stress at x = 10
in., less than 2% at x = 11 in., and less than 6% at
x = 11.5 in.  The load F is applied at x = 12 in.)
Therefore, after setting to unity the depth of the strap,
the stress σx is taken to be

σ x
F

t
=

1
(5)

Note that the calculation of σx does not require a finite
element analysis.

Results and Discussion   

Results of deterministic analyses obtained using
the mean values of the variables are presented first.
Then, results showing the effects of uncertainties are
presented.
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Deterministic Analyses

The deformed shape of the finite element model for
a load of 6000 lb is shown in Figure 5.  In the figure,
deflections are scaled up by a factor of 10 for
visualization purposes.  The joint undergoes significant
bending.

Figure 5.  Deformed shape of the lap shear joint
obtained using a geometrically nonlinear analysis.

The manner in which the total strain energy release
rate GT varies with F2 (the square of the applied load F)
is shown in Figure 6.  Results for both a linear and a
geometrically nonlinear analysis are shown.  For
perspective, the bounds for the two failure modes –
fracture of the adhesive and yield of the strap – are also
shown. The value of F2 corresponding to yield of the
strap is given by (t1 σyield)2.  A discussion of the results
from the linear and nonlinear analyses is presented
below.

Linear
Nonlinear

8

6

4

G
T
, i

n-
lb

/in

2

0 1 2 3
F2, lb2

4 × 107

Yield
F2 ≥ (t1 × σyield)2

Fracture
GT ≥ Gc

Figure 6.  Total strain energy release rate GT as a
function of the square of the applied load.  Failure
bounds are also shown.

Linear analysis.    The forces and displacements X’,
Y’, u’, and v’ on the right sides of equations (3) and (4)
are linear with respect to the applied load F.  The total
strain energy release rate GT is calculated from the sum
of the products of these quantities and hence is
proportional to F2.  Thus, the results shown in Figure 6
for the linear case are expected.

Nonlinear analysis  .  At first glance, the nonlinear
analysis curve in Figure 6 appears to be a line with a
slope different from the slope of the linear analysis
curve.  Since that is not a reasonable conclusion, further
studies were undertaken to examine the nonlinear

solution in detail.  The results shown in Figures 7 and 8
provide the explanation.

In Figure 7, the derivative of GT  with respect to F2

(the slope in Fig. 6) is plotted as a function of the
applied load F.  Note that for the linear case the
derivative is a constant, while for the nonlinear case the
derivative is not a constant.  The derivatives for the
linear case and nonlinear case are the same at F= 0, but
the derivatives differ for other values of F. Figure 8
provides a more dramatic contrast between the linear
and nonlinear analyses.  In this figure, the second
derivative of GT with respect to F2 is plotted as a
function of the applied load F.  For the linear case, the
second derivative is zero for all values of the load F.
For the nonlinear case, the second derivative is
relatively large near F = 0, then drops by three orders of
magnitude near F = 2000 lb.   The computational
techniques used for calculating derivatives of GT are
discussed in Appendix C.

Linear Analysis
Nonlinear Analysis

2.5 × 10–7

2.0

1.0

.5

0 1000 2000
Applied Load, F, lb

3000

1.5dGT
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Figure 7.  Derivative of GT with respect to F2.

Nonlinear Analysis
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2GT
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Figure 8.  Second derivative of GT with respect to F2.
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Based on the results presented in Figures 7 and 8,
the nonlinear analysis curve in Figure 6 can be
interpreted as follows.  At F = 0 the slope of the
nonlinear analysis curve is equal to the slope of the line
for the linear solution.  For values of F between zero
and 2000 lb, the slope of the curve becomes smaller as
the joint straightens and stiffens.  The nonlinear
analysis accounts for that straightening and stiffening.
During straightening, GT  is not linear with respect to
F2.  For values of F greater than about 3000 lb, GT is
nearly linear in F2 with a slope that is smaller than that
calculated from the linear analysis.  In summary, the
geometrically nonlinear analysis accounts for the joint
rotation, straightening, and stiffening, while the linear
analysis does not account for these phenomena.
Because of the scale, the progress of the rotation,
straightening, and stiffening cannot be seen in Figure 6,
but the changes can be seen clearly in Figures 7 and 8.

Analysis with Uncertainties

Two distinctly different approaches for treating
uncertainties are used – probabilistic and possibilistic.
The effects of a geometrically nonlinear analysis and
the effects of two failure modes – fracture of the
adhesive and yield of the strap – are also considered.
First, the convergence for a Monte Carlo simulation and
a technique for greatly reducing computational effort
are presented.  Then, results are presented for various
combinations of probabilistic and possibilistic analysis,
linear and nonlinear analysis, and fracture and yield
failure modes.  (The headings for each of these sections
have the following format: method(s) for handling the
uncertainties, failure mode(s), type(s) of analysis.)
Finally, probabilistic and possibilistic results are
presented for a nonlinear analysis with a combination of
both failure modes.

Convergence and Fracture Failure  .  The primary
method that was used to study the effect of
uncertainties was Monte Carlo simulation (MCS).
Convergence of the Monte Carlo calculations was

evaluated using 100, 1000, and 5000 trials and by
comparing results from a Monte Carlo simulation with
results from a first order reliability method (FORM).
Results for 100, 1000, and 5000 trials are given in
Table 2.  Results are shown for both linear and
nonlinear finite element analyses.  In Table 2, the
applied load used in the linear analysis was 5000 lb; for
the nonlinear analysis the applied load was 6000 lb.
(The loads in Table 2 are different for the linear and
nonlinear analyses because the objectives of the
analysis are to evaluate convergence in the center
portion of each curve.)  Based on these results, MCS
with 5000 trials was considered to be adequate for the
studies presented in this paper.  Note that the objective
was to obtain convergence in the center portion of each
curve.  If the emphasis were on an accurate
representation of data in the tails, a larger number of
trials would have been required.

Probabilistic, Fracture, Linear and Nonlinear  .  As
previously mentioned, for the linear case the total strain
energy release rate GT varies linearly with respect to F2.
That is,

GT  = kF2 (6)

where k is a constant.  Also, for the nonlinear case, GT

is nearly linear in  F2  for large values of F.  This fact
can be used to significantly reduce the computational
resources required to produce curves such as those
shown in Figure 9.  In this figure, the probability of
failure from fracture of the adhesive is plotted as a
function of the applied load F for both a linear and a
nonlinear analysis.  Each curve was obtained using
scaling of individual trials in a Monte Carlo simulation
(n = 5000) that was carried out at a single value of the
load F.  The details of the scaling technique are
presented in Appendix A.  For the linear curve, the
single value of the load F was 5000 lb; for the nonlinear
curve, the single value of the load F was 6000 lb.
Results obtained using FORM are included in this

Table 2.  Convergence study of Monte Carlo simulation

Probability of Failure by Fracture of Adhesive
Monte Carlo Simulation

Analysis
Type Load, lb

n=100 n=1000 n=5000
FORM

Linear 5000 0.515 0.511 0.483 0.483

Nonlinear 6000 0.772 0.763 0.764 0.756
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Figure 9.  Probability of failure by fracture of the
adhesive.

figure to confirm the accuracy of the scaling technique.
Excellent agreement is obtained between the two sets of
results.

Possibilistic and Probabilistic, Fracture, Linear  .
Figure 10 shows the possibility and probability of
failure of the joint by fracture of the adhesive for a
linear finite element analysis.  Here and elsewhere in
this paper, for a given load the possibility of failure is
always greater than the probability of failure.  Also note
that, for this case, the possibility of failure is 1.00 when
the probability of failure (pf) is 0.50.  The probability of
failure pf reaches 0.50 when the load F is 5015 lb.  In
the next section, this value is compared with the value
obtained using a nonlinear analysis.
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Figure 10.  Possibility and probability of failure by
fracture of the adhesive for a linear analysis.

Possibilistic and Probabilistic, Fracture, Linear and
Nonlinear  .  Figure 11 shows the possibility and
probability of failure of the joint caused by fracture of
the adhesive using both linear and nonlinear finite
element analyses.  Compared with the curves for the
linear analysis, the curves for the nonlinear analysis are
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Figure 11.  Possibility and probability of failure caused
by fracture of the adhesive for both a linear and a
nonlinear analysis.

shifted to the right.  For a nonlinear analysis with
pf = 0.50, the load F is 5709 lb.  Recall from the
previous section that the linear analysis predicts a value
of 5015 lb.  According to these results and the results
presented in Figure 6, a nonlinear analysis predicts that
the joint can carry more load than a linear analysis –
i.e., a linear analysis is more conservative.  Further
studies carried out in this paper are based on a nonlinear
finite element analysis.

Possibilistic and Probabilistic, Material Strength  .
Figure 12 shows the possibility and probability of
failure of the joint by material strength failure of the
strap (stress σx greater than yield stress σyield).  These
results are based on equation (5) and do not require a
finite element analysis. For pf = 0.50, the value of the
load F is 5500 lb, which is less than the value of
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Figure 12.  Possibility and probability of material
strength failure of the strap.
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5709 lb for the nonlinear fracture failure mode given in
the previous section.  The results shown in figures 10 –
12 are confirmed in figure 6 which shows that, for a
nonlinear analysis with mean values of the uncertain
parameters, material strength failure occurs at a lower
load than fracture failure; for a linear analysis with
mean values of the uncertain parameters, fracture
occurs at a lower load than material strength failure.

Possibilistic, Fracture and Material Strength,
Nonlinear  .  Figure 13 shows the possibility of failure of
the joint by fracture of the adhesive (solid line) and by
material strength failure of the strap (dashed line).  The
possibilistic failure envelope that considers both failure
modes is the maximum of the possibilities of the two
failure modes.  (In the general case, the possibility
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Figure 13.  Possibility of failure by material strength
and by fracture of the adhesive, plotted individually.

of failure is the maximum of the possibilities of all the
failure modes.)  In this case, the possibilistic curve that
considers both failure modes starts at α = 0  (point A)
with the fracture possibilistic curve – the solid line.  It
follows that line up until the line crosses the strength
possibilistic curve – the dashed line – at about α = 0.75
(point B).  There, the possibilistic curve that considers
both failure modes shifts to the strength possibilistic
curve (line BC) because, for that value of the applied
load F, failure by material strength of the strap has a
higher possibility than failure by fracture of the
adhesive.  In a possibilistic approach for handling
uncertainty, if a failure mode does not have the
maximum possibility for some value of the applied
load, it has no effect on the possibility of failure.  In
contrast, in a probabilistic approach for handling
uncertainty, secondary failure modes do affect the
probability of failure, as discussed below.

Probabilistic, Fracture and Material Strength,
Nonlinear  .  Figure 14 shows the probability of failure of
the joint by fracture of the adhesive and by material
strength failure of the strap.  Three curves are shown.
The first curve (filled circular symbols) is for failure of
the joint by fracture of the adhesive.  The second curve
(filled triangular symbols) is for material strength.  The
third curve (open square symbols) is for either of the
two failure modes or both modes – i.e., the third curve
is the union of the two failure events.   In the
probabilistic approach for calculating the probability of
failure caused by a combination of the two failure
modes, both failure modes have an effect on the
probability of failure, not just the more critical mode.
This phenomenon can be seen in Figure 14, where the
third curve is to the left of either of the two curves for
the individual failure modes – i.e., the third curve
indicates a higher probability of failure than either of
the other two curves.
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Figure 14.  Probability of failure by material strength
and fracture, plotted individually and in combination.

The effect of two failure modes on the probability of
failure is indicated mathematically as

pf (X∪ Y) = pf  (X) + pf (Y) − pf (X∩Y) (7)

where X indicates failure by the first failure mode and Y
indicates failure by the second failure mode.  Finally, if
there were additional failure modes, the curve that
accounts for all modes would shift further to the left.
That is, for a given load, that curve would indicate a
higher probability of failure than the curves for any of
the individual failure modes.
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Probabilistic and Possibilistic, Fracture and
Material Strength, Nonlinear  .  The results of the study
are summarized in Figure 15, which shows the
possibility and probability of failure of the joint by
fracture of the adhesive and by material strength failure
of the strap.  Both curves are for a geometrically
nonlinear analysis.  The possibilistic curve shows the
change in slope where the maximum possibility shifts
from fracture of the adhesive to material strength failure
of the strap.  The possibility of failure becomes 1.0 at a
load F of 5500 lb.  The probability of failure at that
load is 0.66.  (In previous calculations presented in this
paper, the possibility of failure becomes 1.0 when the
probability of failure is 0.50.  The combination of two
failure modes causes that pattern to change.)  The
probability of failure is 0.50 at a load F of 5405 lb.  For
all values of the load F, the possibility of failure is
greater than the probability of failure.
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Figure 15.  Possibility and probability of failure by
combined material strength and fracture.

Discussion of Probabilistic and Possibilistic Methods

Based on the discussions in the previous three
sections, the following contrasts can be drawn between
probabilistic and possibilistic methods.  Suppose a
structure has many failure modes any of which can
cause the structure to fail – i.e., the structure is a series
system.  (The single lap shear joint with two failure
modes is an example of a series system.)  In a
probabilistic analysis the probability of failure increases
with each failure mode considered.  In contrast, in a
possibilistic analysis the possibility of failure increases
only if a failure mode is introduced that has a larger
possibility of failure than any other failure mode.  For
example, suppose that the structure is a chain of
identical links.  The probability of failure increases with
increasing chain length.  The possibility of failure
remains the same regardless of chain length.  As a

result, for multiple failure modes a possibilistic analysis
may become unconservative.

Using the same reasoning, a possibilistic approach
could exhibit unexpected behavior for a structure with
redundancies – i.e., a parallel system.  The probability
of failure of the structural system is reduced as the
redundancy is increased.  In contrast, the possibility of
failure of the structural system is equal to the possibility
of failure of the component having the largest
possibility of failure – regardless of the number of
redundancies.  As a result, for redundant systems a
possibilistic approach is conservative.  An excellent in-
depth discussion of probabilistic versus possibilistic
methods is presented in Reference 11.

Possibilistic approaches for treating uncertainties
may be viable for early design. But it is not clear that
possibilistic   approaches are superior to   probabilistic  
approaches for early design.  For example, whereas the
number of function evaluations for a possibilistic
analysis may be small compared with a Monte Carlo
simulation, the number of function evaluations may be
comparable to that required by some probabilistic
methods such as FORM.  These probabilistic methods
can provide more information than possibilistic
methods.  Furthermore, even though the possibility of
failure was always greater than the probability of failure
for the bonded joint example with two failure modes,
the assumption that possibilistic design is conservative
is not a valid assumption when there are many failure
modes.  In many cases, the choice of methods depends
upon the availability of data.  Finally, the choice of
methods depends upon the designer – how familiar he
is with the characteristics of both the methods and the
design problem.

Concluding Remarks

This paper has explored the effects of
configurational and material uncertainties on the
strength of a single lap shear joint.  Finite element
analyses were used to study the joint.  Both
probabilistic and possibilistic approaches for
accounting for uncertainties were studied, and results
from the two approaches are compared.  The effects of
a geometrically nonlinear analysis and two failure
modes are presented.  A computational technique for
speeding the calculation of the probability of fracture
failure at various loads is presented.

Geometrically nonlinear analyses are essential for
accurately predicting the response of the single lap
shear joint and its fracture failure mode.  The joint
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begins to straighten out and stiffen at a low load.  This
phenomenon can be predicted with a geometrically
nonlinear analysis, but it cannot be predicted with a
linear analysis.  A geometrically nonlinear analysis
predicts that the joint can carry more load than is
predicted by a linear analysis.

For a linear analysis, the strain energy release rates
are proportional to the square of the applied load.  For a
geometrically nonlinear analysis, the strain energy
release rates are almost proportional to the square of the
applied load for large values of the applied load.  These
characteristics make it possible to employ scaling to
substantially reduce computational effort.

Possibilistic approaches for treating uncertainties
may be viable for early design. But it is not clear that
possibilistic approaches are superior to probabilistic
approaches for early design.
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Appendix A.  Monte Carlo Simulation and Scaling of
Strain Energy Release Rate

Monte Carlo simulation involves carrying out a
large number of numerical experiments, or trials, with
random values of the quantities that are selected to be
random variables.  In the trials, the randomness of each
random variable is guided by the statistics specified for
that variable – e.g., type of distribution, mean, and
standard deviation.

In the present study, for each Monte Carlo trial a
statistically independent configuration of the lap joint is
created from the random values of the input variables.
A finite-element model is developed for that
configuration and a finite element analysis is performed
to calculate the total strain energy release rate GT.

In a given trial, if the calculated value of GT

exceeds the experimentally determined critical value
GC, the configuration is considered to have “failed”.
For example, if the total number of trials in a simulation
is 5000 and if there are 3000 failures, then the
probability of failure is 0.6 for this specific load.

Suppose the first Monte Carlo simulation is
conducted with F = F0.  In the general case, in order to
obtain the probability of failure for a different load F1,
the Monte Carlo simulation would have to be repeated
for the new load value.  However, by utilizing the fact
that GT is linear with respect to F2, it is possible to
substantially reduce the computational effort.  For each
trial, the value of GT, for all loads F = F1, can be
calculated by scaling the value of GT calculated for
F = F0.  The scaling is carried out in the following way:

G
F

F
GT F F T F F= ==





1 0

1

0

2

(A1)

The value of GT obtained through scaling for each
trial is compared with the corresponding value of GC.
The number of failures are counted to calculate the
probability of failure for the current load, F = F1.
Hence, it is sufficient to perform the Monte Carlo
simulation only once for an arbitrary load.  The
probability of failure for any other load can be
calculated by scaling GT  for each specific trial.

In the present study, scaling of GT is used to
calculate the probability of failure for both linear and
nonlinear finite element analyses.

Appendix B.  Calculating with Membership Functions

Let α be a parameter that indicates the possibility
of an uncertain quantity taking on a given value.  The
parameter α takes on values between zero and one.  A
value of zero indicates no possibility, while a value of
one indicates maximum possibility.  A membership
function describes the relationship between α and the
possible values of the uncertain quantities.  An example
of a membership function is shown in Figure 3.  In a
possibilistic analysis, each of the uncertain quantities
that contribute to the response is defined in terms of a
membership function.  The objective of the possibilistic
analysis is to determine the corresponding membership
function of the response quantities.  The membership
functions of the response quantities can then be
compared with the membership functions for the
allowable responses to determine the possibility of
failure.

A simple example is used to illustrate how to
perform calculations using membership functions.
Consider the cantilever beam shown in Figure B1.  The
tip deflection δ  is given by

δ = PL

EI

3

3
(B1)

where P is the load at the tip, L is the length, E is
Young’s modulus, and I is the moment of inertia.
Assume that L and I are uncertain quantities with
membership functions similar to that shown in Figure
B2.  The vertical scale is the possibility, denoted α,
which varies from zero to one.  The values of E and P
are taken to be 107 psi and 100 lb, respectively.

P = 100 lb

L = 40 in.

2 in.

1 in.

Figure B1.  Cantilever beam example.

The membership functions for L and I are isosceles
triangles with upper and lower bounds (UB, LB) shown
in Table B1. The bounds are for α = 0.0, 0.5, and 1.0.
The objective is to obtain an estimate of the uncertainty
in δ by calculating its membership function.
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Figure B2.  Example membership function for moment
of inertia I and length L of cantilever beam example.
(Filled circles indicate bounds on I and L corresponding
to α  =  0.0, 0.5, and 1.0.).

To obtain the upper and lower bounds for δ at
α = 0.0, calculate δ for various combinations of L and I
within their α = 0.0 bounds and select the largest and
smallest values.  That is, calculate δ for several
combinations of L and I in the ranges 39.8 ≤ L ≤ 40.2
and 0.64583 ≤ I ≤ 0.68750.  To obtain the upper and
lower bounds for δ at α = 0.5, calculate δ for various
combinations of L and I within their α = 0.5 bounds and
select the largest and smallest values.  That is, calculate
δ  for several combinations of L and I in the ranges
39.9 ≤ L ≤ 40.1 and 0.65625 ≤ I ≤ 0.67708.  The same
approach is used for other values of α.  To obtain the
most likely value of δ, which is the value corresponding
to α = 1.0, use the most likely values of L and I, 40.0
and 0.66667, respectively.

For this simple example it is easy to select the
values of L and I that give the upper and lower bounds
on δ.  The upper bound on δ is given by a combination
of the upper bound on L and the lower bound on I.  The
lower bound on δ is given by a combination of the
lower bound on L and the upper bound on I.

In general, to calculate the upper and lower bounds on a
response quantity at a given value of α it is necessary to
use   several   combinations of values of the independent
variables at that same value of α.  These values include
both the bounds and values between the bounds.  It
cannot be assumed that bounds on the response
quantities can be identified by considering only the
bounds on the independent variables.

Appendix C.  Computational Techniques Used for
Calculating Derivatives of       G    T

The data for Figures 7 and 8 were obtained using a
combination of chain rule differentiation and finite
difference approximations. The chain rule
differentiation provided expressions containing
derivatives of GT with respect to F rather than F2.  That
change was made because the values of GT were
calculated at equal increments in F (100 lb increments)
rather than equal increments in F2.  As a result,
multipoint finite difference approximations could be
more accurate for derivatives with respect to F than for
derivatives with respect to F2.

For example, for Figure 8, chain rule
differentiation provides the following expression

d G

d F F

d G

dF F

dG

dF
T T T

2

2 2 2

2

2 3
1

4

1

4( )
= − (C1)

The values of the derivatives on the right hand side in
equation (C1) were calculated using 4- and 5-point

finite difference approximations.  The value of 
d G

d F
T

2

2 2( )
at F ≈ 70 lb was calculated with a 2-point central
difference formula.  The computational technique
described above was most valuable in calculating

d G

d F
T

2

2 2( )
 for small values of F where that derivative is

changing rapidly.

Table B1.  Assumed bounds on independent variables I and L and corresponding
 calculated bounds for tip deflection of cantilever beam example

I in.4 L in. δ in.
α

LB UB LB UB LB UB

0.0
0.5
1.0

0.64583
0.65625
0.66667

0.68750
0.67708
0.66667

39.800
39.900
40.000

40.200
40.100
40.000

0.30567
0.31272
0.32000

0.33530
0.32752
0.32000


